Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
Teilprojekt P8 - Fracture in Polymer Composites: Meso to Macro
(Third Party Funds Group – Sub project)
Overall project: Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
Project leader: ,
Project members: ,
Start date: 2. January 2019
End date: 30. June 2023
Acronym: GRK2423 - P8
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/home/research/p-8-fracture-in-polymer-composites-meso-to-macro/
Abstract
The mechanical properties and the fracture toughness of polymers can be
increased by adding silica nanoparticles. This increase is
mainly caused by the development of localized shear bands, initiated by
the stress concentrations due to the silica particles. Other mechanisms
responsible for the observed toughening are debonding of the particles
and void growth in the matrix material. The particular mechanisms depend
strongly on the structure and chemistry of the polymers and will be
analysed for two classes of polymer-silica composites, with highly
crosslinked thermosets or with biodegradable nestled fibres (cellulose,
aramid) as matrix materials.
The aim of the project is to study the influence of different mesoscopic
parameters, as particle volume fraction, on the macroscopic fracture
properties of nanoparticle reinforced polymers.
Publications
Size Effects in Computational Homogenization of Polymer Nano-Composites
In: Proceedings in Applied Mathematics & Mechanics 2021
DOI: 10.1002/pamm.202000047
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.202000047
, :
A comparative assessment of different adaptive spatial refinement strategies in phase-field fracture models for brittle fracture
In: Forces in Mechanics 10 (2023), p. 100157
ISSN: 2666-3597
DOI: 10.1016/j.finmec.2022.100157
URL: https://www.sciencedirect.com/science/article/pii/S2666359722000853
, , :