Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
Teilprojekt P6 - Fracture in Thermoplastics: Discrete-to-Continuum
(Third Party Funds Group – Sub project)
Overall project: Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
Project leader: ,
Project members: , , ,
Start date: 2. January 2019
End date: 30. June 2023
Acronym: GRK2423 - P6
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/home/research/p-6-fracture-in-thermoplastics-discrete-to-continuum/
Abstract
Nanocomposites have great potential for various applications since their
properties may be tailored to particular needs. One of the most
challenging fields of research is the investigation of mechanisms in
nanocomposites which improve for instance the fracture toughness even at
very low filler contents. Several failure processes may occur like
crack pinning, bi-furcation, deflections, and separations. Since the
nanofiller size is comparable to the typical dimensions of the monomers
of the polymer chains, processes at the level of atoms and molecules
have to be considered to model the material behaviour properly. In
contrast, a pure particle-based description becomes computationally
prohibitive for system sizes relevant in engineering. To overcome this,
only e.g. the crack tip shall be resolved to the level of atoms or
superatoms in a coarse-graining (CG) approach.
Thus, this project aims to extend the recently developed multiscale
Capriccio method to adaptive particle-based regions moving
within the continuum. With such a tool at hand, only the vicinity of a
crack tip propagating through the material has to be described at CG
resolution, whereas the remaining parts may be treated continuously with
significantly less computational effort.
Publications
A particle‐continuum coupling method for multiscale simulations of viscoelastic‐viscoplastic amorphous glassy polymers
In: International Journal for Numerical Methods in Engineering (2021)
ISSN: 0029-5981
DOI: 10.1002/nme.6836
, , :