• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Applied Mechanics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Faculty of Engineering
  • Mein Campus
  • UnivIS
  • StudOn
  • Map
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Institute of Applied Mechanics
Navigation Navigation close
  • Institute
    • Team
    • Alumni
    • Library
    • Job Offers
    Portal Institute
  • Research
    • Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
    • Contact mechanics
      • Material modelling of sheet-layered lamination stacks
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Constitutive friction law for the description and optimization of tailored surfaces
    • Material Mechanics
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of solvent penetration in glassy polymers
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Material modelling of sheet-layered lamination stacks
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Material modelling of sheet-layered lamination stacks
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Uncertainty Quantification
      • C3: Parameter and shape optimization in finite elastoplasticity
      • Fuzzy-arithmetical modeling of processes with uncertain prarameters
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
    • Multiscale mechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Process Simulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Macroscopic modeling, simulation, and optimization of the selective beam melting process (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Structural dynamics
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Vibration reduction by energy transfer using shape adaption
      • Structural dynamics of rotating systems
      • Investigation and reduction of nonlinear oscillation systems using modal approaches
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
    • Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Other Projects
      • A numerical model of translational and rotational momentum transfer of small on-spherical rigid particles in fluid dominated two-phase flows
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publications
    • Theses
    Portal Research
  • Teaching
    • Topics
    • Lectures
    • Examinations
    • LTM juniors
    Portal Teaching
  • Activities
    • Conferences
      • ICEAM2017
    • Invited talks
    Portal Activities
  1. Home
  2. Research
  3. Multiscale mechanics
  4. Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture

Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture

In page navigation: Research
  • Biomechanics
  • Contact mechanics
  • Material Mechanics
  • Uncertainty Quantification
  • Multiscale mechanics
    • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
    • Teilprojekt P6 - Fracture in Thermoplastics: Discrete-to-Continuum
    • Teilprojekt P10 - Configurational Fracture/Surface Mechanics
    • Teilprojekt P11 - Fracture Control by Material Optimization
    • Teilprojekt P8 - Fracture in Polymer Composites: Meso to Macro
    • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
    • Teilprojekt P5 - Compressive Failure in Porous Materials
    • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
    • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
    • Identifikation von Interphaseneigenschaften in Nanokompositen
    • Meso- and Macroscopic Modelling, Simulation and Numerical Homogenization of the Behaviour of Metallic Materials in Additive Manufacturing
    • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
    • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
    • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
    • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
    • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
    • Bridging scales - from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
    • Teilprojekt P12 - Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
    • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
  • Process Simulation
  • Structural dynamics
  • Optimization
  • Other Projects

Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture

Teilprojekt P12 - Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture

(Third Party Funds Group – Sub project)

Overall project: Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik (FRASCAL)
Project leader: Ana-Suncana Smith, Erik Bitzek, Sebastian Pfaller
Project members: Christian Wick
Start date: 2. January 2019
End date: 30. June 2023
Acronym: GRK2423 - P12
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/home/research/p-12-postdoctoral-project-quantum-to-continuum-model-of-thermoset-fracture/

Abstract

Fracture is an inherently multiscale process in which processes at all length- and timescales can contribute to the dissipation of energy and thus determine the fracture toughness. While the individual processes can be studied by specifically adapted simulation methods, the interplay between these processes can only be studied by using concurrent multiscale modelling methods. While such methods already exist for inorganic materials as metals or ceramics, no similar methods have been established for polymers yet.

The ultimate goal of this postdoc project is to develop a concurrent multiscale modelling approach to study the interplay and coupling of process on different length scales (e.g. breaking of covalent bonds, chain relaxation processes, fibril formation and crazing at heterogeneities,…) during the fracture of an exemplary thermoset and its dependence on the (local) degree of cross-linking. In doing so, this project integrates results as well as the expertise developed in the other subprojects and complements their information-passing approach.

Publications

  • Livraghi M., Pahi S., Nowakowski P., Smith DM., Wick C., Smith AS.:
    Block Chemistry for Accurate Modeling of Epoxy Resins
    In: Journal of Physical Chemistry B (2023), Article No.: 127
    ISSN: 1520-6106
    DOI: 10.1021/acs.jpcb.3c04724
    URL: https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c04724
  • Torres Huamani D., Zhao W., Pfaller S.:
    A particle‐continuum coupling method for amorphous polymers with multiple particle‐based domains
    In: Proceedings in Applied Mathematics and Mechanics 22 (2023), Article No.: e202200245
    ISSN: 1617-7061
    DOI: 10.1002/pamm.202200245

Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstrasse 5
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Instagram
  • Twitter
  • Wikipedia
Up