Navigation

Prof. Dr.-Ing. habil. Kai Willner

Department of Mechanical Engineering
Institute of Applied Mechanics (Prof. Dr. Steinmann)

Room: Room 00.039
Egerlandstraße 5
91058 Erlangen
Deutschland

 

Modellierung und Simulation von Systemen mit unsicheren Parametern

Die meisten in den Ingenieurwissenschaften gebräulichen Rechenverfahren, wie z.B. die Finite Element Methode in der Mechanik, setzen genau bekannte Modellparameter als eine wesentliche Grundlage für den Erfolg ihrer Berechnungen voraus. Im Falle unsicherer Modellparameter muss so vor Beginn der Rechnung der “wahrscheinlichste” Wert für jeden dieser Parameter bestimmt und dem Rechenverfahren als “scharfer Wert” zur Verfügung gestellt werden. Die Ergebnisse des Verfahrens sind dann wiederum “scharfe Werte”, die dem Benutzer eine scheinbare Exaktheit vorspiegeln, die unter Berücksichtigung der unsicheren Voraussetzungen jedoch in der Realität kaum ihre Entsprechung findet.
Mit Hilfe der Fuzzy-Arithmetik ist es nun möglich, auch a priori unsichere Parameter mit ihren “unscharfen Werten” zu verarbeiten, wobei das anfängliche Mehr an Information im Rechenverfahren seine volle Berücksichtigung findet.
Es werden Konzepte, Verfahren und Programmpakete entwickelt, mit deren Hilfe verschiedenste ingenieurwissenschaftliche Problemstellungen unter Einbeziehung unsicherer Modellparameter zufriedenstellend gelöst werden können.

Kontaktmechanik

  • Entwicklung konstitutiver Kontaktgesetze
  • Effiziente Kontaktalgorithmen für die FEM

Methode der finiten Elemente

Die Finite-Elemente-Methode (FEM, englisch: finite element method) ist das am häufigsten eingesetzte Verfahren zur Berechnung komplexer Konstruktionen im Maschinenbau, im Apparatebau, in der Fahrzeugtechnik, in der Luft- und Raumfahrttechnik und im Bauwesen. Der Einsatz erfolgt dabei nicht nur für Standardprobleme der Festigkeitsberechnung und der Schwingungs- und Stabilitätsuntersuchung, sondern auch für Spezialaufgaben, wie z.B. für Aufgaben der Bruch- und Kontaktmechanik oder bei extrem großen Deformationen und plastischen Beanspruchungen, wie sie etwa bei Crash-Untersuchungen auftreten.
Alle genannten Beispiele entstammen der Strukturmechanik, jedoch ist die Methode der finiten Elemente nicht darauf beschränkt. Prinzipiell kann jedes andere Feldproblem, das durch partielle Differentialgleichungen beschrieben wird, mit Hilfe der FEM gelöst werden.
Ein typisches Beispiel ist die Wärmeleitung. Auch Probleme der Hydro- und Aerodynamik oder der Akustik lassen sich lösen. Hier sind jedoch andere Verfahren, wie die Randelemente-Methode (BEM, englisch: boundary element method), häufig besser geeignet, da es sich um unendliche oder halbunendliche Gebiete handeln kann, die durch eine Randformulierung sehr viel besser erfaßt werden können.
Die FEM ist von Vorteil, wenn es sich um ein klar begrenztes Gebiet handelt, wie zum Beispiel bei der Strömungsberechnung in einem Hafenbecken oder der Innenraumakustik eines Fahrzeugs. Ähnliches gilt bei der Untersuchung elektromagnetischer Felder.
Ein immer mehr in den Vordergrund tretender Aspekt ist die Behandlung gekoppelter Feldprobleme, wie zum Beispiel thermomechanische Aufgabenstellungen. Dies umfaßt die Berechnung von wärmeinduzierten Spannungen, aber auch die Berechnung von Formgedächtniselementen, die thermisch aktiviert werden. Die sich rapide ausbreitende Verwendung piezomechanischer, magnetostriktiver oder elektrorheologischer Materialien als Aktoren und Sensoren macht die gekoppelte Berechnung elektrischer bzw.magnetischer Felder mit mechanischen Größen nötig. Darüberhinaus treten gekoppelte Probleme als Interaktionsproblem zwischen Gebieten mit verschiedenen Feldgrößen auf. Ein typisches Beispiel ist hier die Fluid-Struktur-Kopplung bei akustischen Fragestellungen.
Einen Überblick über die FEM-Resourcen im Internet mit Zugang zu frei verfügbarer Software gibt Finite Element Analysis.

Aktuelle Forschungsprojekte:

  • FOR 2271: Prozessorientiertes Toleranzmanagement mit virtuellen Absicherungsmethoden

    (Third Party Funds Group – Overall project)

    Term: 1. June 2016 - 31. May 2019
    Funding source: DFG / Forschergruppe (FOR)
    URL: https://www.for2271.tf.fau.de/

    The comprehension of geometric part deviationsand their manufacturing and assembly related sources as well as the investigationof their effects on the function and quality of technical products builds theframework for the planned research group “process-oriented tolerance managementbased on virtual computer-aided engineering tools”. The aim of this researchgroup is the provision of holistic methods and efficient tools for thecomprehensive management of geometric deviations along the product originationprocess, which are to be validated in a model factory. In doing so, aparticular focus is set on the development of a procedure for the fruitfulcooperation of all departments involved in geometric variations management,from product development, to manufacturing, to assembly and to metrology, whichwill enable companies to quickly specify functional tolerances, which aremanufacturable and measurable, and consequently to save costs and to reduce thetime to market.

    In this regard, the vision of the researchgroup is to enable the close collaboration of product development,manufacturing, assembly and metrology in computer-aided tolerancing, i. e.the joint formulation of functional tolerances, which are manufacturable andmeasurable. By enabling this close collaboration, all manufacturing andassembly related sources of later problems regarding the product function andquality can be considered already during early phases of virtual product andprocess development. As a consequence, tolerances can be specified efficientlyand optimized inspection plans as well as robust manufacturing and operatingwindows can be identified, which allows the development of robust products tobe manufactured and measured at low costs.  

    Since geometric part deviations are inevitableand affect the function and quality of technical products, their managementalong the product origination process is essential for the development offunctioning products, which conform to the quality and usage requirements ofcustomers and are successful on international markets. As a consequence,tolerance management is a fundamental task in product development and reachesvarious fields of industry, from consumer to industrial goods. Due to steadilyincreasing requirements on quality and efficiency, it strongly gains importancenot only with large, but also small and medium-sized enterprises. In thiscontext, the industrial application of the scientific findings of the researchgroup will contribute to the success of the German economy.  

  • Vibration reduction by energy transfer using shape adaption

    (Third Party Funds Group – Sub project)

    Overall project: SPP 1897: Calm, Smooth and Smart - Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation
    Term: 1. January 2016 - 31. December 2019
    Funding source: DFG / Schwerpunktprogramm (SPP)

    Lightweight design is one of the most important issues in engineering design. The objective is to reduce the mass of structural components for the purpose of saving costs, energy and resources in manufacturing and operation processes. However, the lighter the structure is, the more it is prone to unwanted vibrations. Such vibrations should be minimized in order to prevent the environment, products and human beings from being harmed and to maximize the lifetime of the products.Vibration reduction can be achieved by passive, semi-active or active measures, where passive means that no external energy is needed, while semi-active and active measures employ external energy to either control dissipation or directly counteract the vibrational motion, respectively. Since active measures usually do not rely on dissipation, they do not fall in the scope of the call for proposals and will not regarded in this project. In the realm of passive and semi-active measures, two general approaches can be used to reduce vibration in structures, namely that of damping, which is the dissipation of kinetic energy into another form of energy, or that of absorption, which is the transfer of kinetic energy from a critical mode into an uncritical mode.The envisioned approach will combine the concepts of damping and absorption in a novel way by integrating the functionality of a damped, tuned mass absorber into a shape adaptive structure. By dynamically adapting the stiffness of a slender, beam-like structure using shape adaption of the cross-section, kinetic energy will be transferred from the critical low-frequency bending modes into a specifically designed, higher frequency absorber mode, which can then be damped in an optimal way. Optimal design of the shape adaption mechanism and of the absorber mode will be pursued using compliant mechanisms. The dissipation will be optimized by a specifically designed friction damper.

  • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials

    (Third Party Funds Group – Sub project)

    Overall project: SPP 1886: Polymorphic uncertainty modelling for the numerical design of structures
    Term: 1. January 2016 - 31. March 2020
    Funding source: DFG / Schwerpunktprogramm (SPP)

    The overarching goal of the proposed project at the methodological side is to establish a computationally tractable numerical method that is suited to capture polymorphic uncertainties in large-scale problems (as arising from the numerical analysis of heterogeneous materials microstructures). On the one hand the method will allow for fuzzy probability distributions of the random parameters (describing a microstructures geometry) and on the other hand the method will be based on only a few reduced basis modes. These ingredients will enable to capture epistemic uncertainties in addition to aleatoric uncertainties in a computationally accessible manner. The overarching goal of the proposed project at the application side is to establish a non-deterministic macroscopic material model. On the one hand the model accounts for the heterogeneity of the underlying material's microstructure by computational homogenization, and on the other hand it captures polymorphic uncertainties in the geometry description of the microstructure. The non-deterministic macroscopic material model then represents the necessary input for the mechanical design of macroscopic (engineering) structures under due consideration of polymorphic uncertainties in the heterogeneous materials microstructure.

  • Fuzzy-arithmetical modeling of processes with uncertain prarameters

    (Third Party Funds Group – Sub project)

    Overall project: FOR 2271: Prozessorientiertes Toleranzmanagement mit virtuellen Absicherungsmethoden
    Term: 1. January 2016 - 28. February 2019
    Funding source: DFG / Forschergruppe (FOR)
  • Structural dynamics of rotating systems

    (Own Funds)

    Term: 1. January 2015 - 31. May 2020
  • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact

    (Own Funds)

    Term: since 1. January 2015

    Rotating systems are subject to gyroscopic effects, which influence the structure’s dynamics. The Arbitrary-Lagrangian-Eulerian formulation in the finite element method offers an efficient way to include translational and rotatory guiding movement in the model in the course of decoupling this motion from the FE mesh. At the same time this approach aggravates the computation of frictional contact of the rotating body with other still-standing structures.
    This procedure stems from the field of rolling contact dynamics and is used in this project for the simulation of disc brakes. By means of these non-linear gyroscopic ALE-systems miscellaneous methods of reduced order modelling in structural dynamics are put to test and extended to meet the models peculiarities.

  • Material modelling of sheet-layered lamination stacks

    (Own Funds)

    Term: since 1. January 2015

    The numerical simulation of sheet-layered lamination stacks, which can be found in electric motors and transformers, is a challenging task in structural mechanics due to the layout of these components.  Depending on the manufacturing process, these sheets are either in frictional contact to each other or are linked together with the help of a bonding varnish. Especially the interlayer between individual sheets and their interaction have a strong influence on the structure and may be responsible for a nonlinear deformation behavior. In the context of performance and computational effort, it is desirable to avoid a full Finite-Element simulation incorporating every layer such that homogenization techniques are used in this project to derive a sophisticated surrogate material model, which takes the special micro-structure of these lamination stacks into account.

  • Investigation and reduction of nonlinear oscillation systems using modal approaches

    (Own Funds)

    Term: since 1. September 2012

    In this project nonlinear oscillating systems are investigated. The nonlinearity is caused by the effect of large deformations (geometrical nonlinearity) or by physical effects, like friction. A designated target is after a nonlinear modal analysis (for example on the basis of NNMs) a model reduction on the isolated nonlinear mode. Limitations for this approach are given by the nonlinear modal analysis.

  • C1: Constitutive friction law for the description and optimization of tailored surfaces

    (Third Party Funds Group – Sub project)

    Overall project: TRR 73: Umformtechnische Herstellung von komplexen Funktionsbauteilen mit Nebenformelementen aus Feinblechen - Blechmassivumformung
    Term: 1. January 2009 - 31. December 2012
    Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
    URL: https://www.tr-73.de/
    Die Ziele des Projekts sind die Entwicklung eines konstitutiven Reibgesetzes und die Realisierung anwendungsangepasster tribologischer Bedingungen für die Blechmassivumformung mittels Tailored Surfaces. Durch den Einsatz von Halbzeugen mit definiert strukturierten Oberflächen und geeigneter Schmierstoffsysteme sollen der Stofffluss gezielt beeinflusst und so auch die Prozessgrenzen erweitert werden. Ausgehend von der numerischen Betrachtung der tribologischen Bedingungen im Halbraummodell wird das konstitutive Reibgesetz weiterentwickelt und in die Finite-Element Simulation implementiert, wodurch ein verbessertes Prozessverständnis geschaffen werden kann.
  • C3: Parameter and shape optimization in finite elastoplasticity

    (Third Party Funds Group – Sub project)

    Overall project: TRR 73: Umformtechnische Herstellung von komplexen Funktionsbauteilen mit Nebenformelementen aus Feinblechen - Blechmassivumformung
    Term: 1. January 2009 - 31. December 2012
    Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
    URL: http://www.tr-73.de

Vorlesung (VORL)