• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Applied Mechanics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Faculty of Engineering
  • Mein Campus
  • UnivIS
  • StudOn
  • Map
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Institute of Applied Mechanics
Navigation Navigation close
  • Institute
    • Team
    • Alumni
    • Library
    • Job Offers
    Portal Institute
  • Research
    • Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
    • Contact mechanics
      • Material modelling of sheet-layered lamination stacks
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Constitutive friction law for the description and optimization of tailored surfaces
    • Material Mechanics
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of solvent penetration in glassy polymers
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Material modelling of sheet-layered lamination stacks
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Material modelling of sheet-layered lamination stacks
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Uncertainty Quantification
      • C3: Parameter and shape optimization in finite elastoplasticity
      • Fuzzy-arithmetical modeling of processes with uncertain prarameters
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
    • Multiscale mechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Process Simulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Macroscopic modeling, simulation, and optimization of the selective beam melting process (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Structural dynamics
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Vibration reduction by energy transfer using shape adaption
      • Structural dynamics of rotating systems
      • Investigation and reduction of nonlinear oscillation systems using modal approaches
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
    • Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Other Projects
      • A numerical model of translational and rotational momentum transfer of small on-spherical rigid particles in fluid dominated two-phase flows
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publications
    • Theses
    Portal Research
  • Teaching
    • Topics
    • Lectures
    • Examinations
    • LTM juniors
    Portal Teaching
  • Activities
    • Conferences
      • ICEAM2017
    • Invited talks
    Portal Activities
  1. Home
  2. Institute of Applied Mechanics
  3. Research
  4. Multiscale mechanics
  5. Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials

Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials

In page navigation: Institute of Applied Mechanics
  • Activities
  • Institute
  • Publications
  • Teaching
  • Research
    • Biomechanics
    • Contact mechanics
    • Material Mechanics
    • Multiscale mechanics
      • Bridging scales - from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Meso- and Macroscopic Modelling, Simulation and Numerical Homogenization of the Behaviour of Metallic Materials in Additive Manufacturing
    • Process Simulation
    • structural dynamics
    • Optimization
    • Other Projects

Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials

Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials

(Third Party Funds Single)

Overall project:
Project leader: Paul Steinmann
Project members:
Start date: 1. April 2012
End date: 31. March 2017
Acronym: MOCOPOLY
Funding source: EU - 7. RP / Ideas / ERC Advanced Investigator Grant (AdG)
URL:

Abstract

MOCOPOLY is a careful revision of an AdG2010-proposal that was evaluated above the quality threshold in steps1&2. In the meantime the applicant has made further considerable progress related to the topics of MOCOPOLY. Magneto-sensitive polymers (elastomers) are novel smart materials composed of a rubber-like matrix filled with magneto-active particles. The non-linear elastic characteristics of the matrix combined with the magnetic properties of the particles allow these compounds to deform dramatically in response to relatively low external magnetic fields. The rapid response, the high level of deformations achievable, and the possibility to control these deformations by adjusting the external magnetic field, make these materials of special interest for the novel design of actuators for a fascinating variety of technological applications. It is the overall objective of this proposal to uncover the process-microstructure-properties relations of the emerging novel multi-scale, multi-physics material class of magneto-sensitive polymers with the aim to better exploit its promising potential for future, currently unimagined technological applications. This objective will only be achieved by performing integrated multi-disciplinary research in fabrication, characterisation, modelling, simulation, testing and parameter identification. This proposal therefore sets up a work programme consisting of nine strongly interconnected work packages that are devoted to:1) Fabrication of magneto-sensitive polymers2) microstructure characterisation by modelling and simulation3) microstructure characterisation by CT-scanning4) continuum physics modelling at the micro-scale5) computational multi-physics homogenisation6) continuum physics modelling at the macro-scale7) testing at the macro-scale8) multi-scale parameter identification9) macro-scale parameter identification.The work programme is therefore characterised by various feedback loops between the work packages.

Publications

  • Brands B., Mergheim J., Steinmann P.:
    Reduced-order modelling for linear heat conduction with parametrised moving heat sources
    In: GAMM-Mitteilungen 39 (2016), p. 170-188
    ISSN: 0936-7195
    DOI: 10.1002/gamm.201610011
  • Pivovarov D., Steinmann P.:
    On stochastic FEM based computational homogenization of magneto-active heterogeneous materials with random microstructure
    In: Computational Mechanics 58 (2016), p. 981-1002
    ISSN: 0178-7675
    DOI: 10.1007/s00466-016-1329-4
  • Pivovarov D., Steinmann P.:
    Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties
    In: Computational Mechanics 57 (2016), p. 123-147
    ISSN: 0178-7675
    DOI: 10.1007/s00466-015-1224-4
  • Walter B., Pelteret JP., Kaschta J., Schubert DW., Steinmann P.:
    Preparation of magnetorheological elastomers and their slip-free characterization by means of parallel-plate rotational rheometry
    In: Smart Materials and Structures 26 (2017), Article No.: 085004
    ISSN: 1361-665X
    DOI: 10.1088/1361-665X/aa6b63
    URL: http://iopscience.iop.org/article/10.1088/1361-665X/aa6b63
  • Walter B., Pelteret JP., Kaschta J., Schubert DW., Steinmann P.:
    On the wall slip phenomenon of elastomers in oscillatory shear measurements using parallel-plate rotational rheometry: I. Detecting wall slip
    In: Polymer Testing (2017)
    ISSN: 0142-9418
    DOI: 10.1016/j.polymertesting.2017.05.035

Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstrasse 5
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Instagram
  • Twitter
  • Wikipedia
Up