• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Applied Mechanics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Faculty of Engineering
  • Mein Campus
  • UnivIS
  • StudOn
  • Map
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Institute of Applied Mechanics
Navigation Navigation close
  • Institute
    • Team
    • Alumni
    • Library
    • Job Offers
    Portal Institute
  • Research
    • Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
    • Contact mechanics
      • Material modelling of sheet-layered lamination stacks
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Constitutive friction law for the description and optimization of tailored surfaces
    • Material Mechanics
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of solvent penetration in glassy polymers
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Material modelling of sheet-layered lamination stacks
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Material modelling of sheet-layered lamination stacks
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Uncertainty Quantification
      • C3: Parameter and shape optimization in finite elastoplasticity
      • Fuzzy-arithmetical modeling of processes with uncertain prarameters
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
    • Multiscale mechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Process Simulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Macroscopic modeling, simulation, and optimization of the selective beam melting process (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Structural dynamics
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Vibration reduction by energy transfer using shape adaption
      • Structural dynamics of rotating systems
      • Investigation and reduction of nonlinear oscillation systems using modal approaches
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
    • Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Other Projects
      • A numerical model of translational and rotational momentum transfer of small on-spherical rigid particles in fluid dominated two-phase flows
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publications
    • Theses
    Portal Research
  • Teaching
    • Topics
    • Lectures
    • Examinations
    • LTM juniors
    Portal Teaching
  • Activities
    • Conferences
      • ICEAM2017
    • Invited talks
    Portal Activities
  1. Home
  2. Institute of Applied Mechanics
  3. Research
  4. Material Mechanics
  5. Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.

Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.

In page navigation: Institute of Applied Mechanics
  • Activities
  • Institute
  • Publications
  • Teaching
  • Research
    • Biomechanics
    • Contact mechanics
    • Material Mechanics
      • Bridging scales - from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Modeling and computation of solvent penetration in glassy polymers
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Material modelling of sheet-layered lamination stacks
    • Multiscale mechanics
    • Process Simulation
    • structural dynamics
    • Optimization
    • Other Projects

Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.

Bridging scales - from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.

(Third Party Funds Single)

Overall project:
Project leader: Denis Davydov
Project members: Paul Steinmann, Gerhard Wellein
Start date: 1. January 2016
End date: 30. September 2018
Acronym:
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL:

Abstract

The concurrently coupled Quantum Mechanics (QM) - Continuum Mechanics (CM) approach for electro-elastic problems is considered in this proposal. Despite the fact that efforts have been made to bridge different description of matter, many questions are yet to be answered. First, an efficient Finite Element (FE)-based solution approach to the Kohn-Sham (KS) equations of Density Functional Theory (DFT) will be further developed. The h-adaptivity in the FE-based solution with non-local pseudo-potentials, as well as the mesh transformation during the structural optimization and formulation of the deformation map are the main topics to be studied. It should be noted that until now there exists no open-source implementation of the DFT approach which uses a FE basis and provides hp-refinement capabilities. A FE basis is very attractive in the context of the DFT theory because of its completeness, refinement possibility as well as good polarization properties based on domain decomposition. Second, QM quantities will be related to their CM counterparts (e.g. displacements, deformation gradient, the Piola stress, polarization, etc). This will be achieved using averaging in the Lagrangian configuration. To that end the full control over a FE-based solution of the KS equations is required. The procedure is then to be tested on a representative numerical example - bending of a single wall carbon nanotube. On the CM side, the surface-enhanced continuum theory will be utilized to properly capture surface effects. It should be noted that although several theoretical works exist on this matter, no numerical attempts have been made to check their validity on test examples. Lastly, based on the correspondence between different formulations, a concurrently coupled QM-CM method will be proposed. Coupling will be achieved in a staggered way, i.e. QM and CM problems will be solved iteratively with a proper exchange of information between them. A test-problem of crack propagation in a graphene sheet will be considered. As a long term goal of the project, coupling strategies for electro-elastic problems will be developed. To the best of my knowledge, non of the QM-CM coupling method is capable to handle electro-elastic problems.

Publications

  • Davydov D., Gerasimov T., Pelteret JP., Steinmann P.:
    Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics
    In: Advanced Modeling and Simulation in Engineering Sciences 4 (2017), p. 7
    ISSN: 2213-7467
    DOI: 10.1186/s40323-017-0093-0

Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstrasse 5
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Instagram
  • Twitter
  • Wikipedia
Up