• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Friedrich-Alexander-Universität Institute of Applied Mechanics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Faculty of Engineering
  • Mein Campus
  • UnivIS
  • StudOn
  • Map
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Institute of Applied Mechanics
Navigation close
  • Institute
    • Team
    • Alumni
    • Library
    • Job Offers
    Portal Institute
  • Research
    • Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
    • Contact mechanics
      • Material modelling of sheet-layered lamination stacks
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Constitutive friction law for the description and optimization of tailored surfaces
    • Material Mechanics
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of solvent penetration in glassy polymers
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Material modelling of sheet-layered lamination stacks
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Material modelling of sheet-layered lamination stacks
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Uncertainty Quantification
      • C3: Parameter and shape optimization in finite elastoplasticity
      • Fuzzy-arithmetical modeling of processes with uncertain prarameters
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
    • Multiscale mechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Process Simulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Macroscopic modeling, simulation, and optimization of the selective beam melting process (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Structural dynamics
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Vibration reduction by energy transfer using shape adaption
      • Structural dynamics of rotating systems
      • Investigation and reduction of nonlinear oscillation systems using modal approaches
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
    • Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Other Projects
      • A numerical model of translational and rotational momentum transfer of small on-spherical rigid particles in fluid dominated two-phase flows
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publications
    • Theses
    Portal Research
  • Teaching
    • Topics
    • Lectures
    • Examinations
    • LTM juniors
    Portal Teaching
  • Activities
    • Conferences
      • ICEAM2017
    • Invited talks
    Portal Activities
  1. Home
  2. Institute of Applied Mechanics
  3. Research
  4. Contact mechanics

Contact mechanics

In page navigation: Institute of Applied Mechanics
  • Activities
  • Institute
  • Publications
  • Teaching
  • Research
    • Biomechanics
    • Contact mechanics
      • TR 73, TP C1: Constitutive friction law for the description and optimization of tailored surfaces
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Material modelling of sheet-layered lamination stacks
    • Material Mechanics
    • Multiscale mechanics
    • Process Simulation
    • structural dynamics
    • Optimization
    • Other Projects

Contact mechanics

Aim is the description of the normal and tangential contact behavior of metal surfaces by constitutive contact laws which are suitable for the application in numerical simulation tools like the finite element method.
Starting point is the measurement, description and characterisation of rough surfaces at the micro scale and the subsequent simulation of the deformation behavior of the surface rough roughness by an elasto-plastic halfspace model, which takes into account lubrication and coatings.
From the halfspace simulations, constitutive contact laws can be identified, whih represent the homogenized behavior on the macroscale and can be experimentally verified at this scale.

Applications can be found in forming simulations, the modelling of energy dissipation in joints and the simulation of lamination stacks in electrical machines.

Projects:

Term: 1. January 2009 - 31. March 2021
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
Project leader: Ulf Engel, Kai Willner, Marion Merklein

A central challenge in sheet-bulk metal forming is a partially uncontrolled material flow. This worsens the achievable geometrical accuracy of the parts. In this context, the objective of the project is to control the material flow by local adjustments of the friction by modifying the workpiece or tool surface. Hereby, the die filling of the functional elements is improved. Especially tool-sided modifications have a high potential, since they do not extend the process chain. However, for an efficient application, they must offer a high wear resistance, which is why the functional relationships between wear-induced changes in the tool topography and friction are being researched.

→ More information

Term: 1. February 2011 - 28. February 2014
Funding source: DFG / Schwerpunktprogramm (SPP)
Project leader: Paul Steinmann

This proposal aims at an extension of a recently developed, hybrid MD-FE simulation scheme towards its application to materials dominated by polymer-solid interphases. Only particle-based methods are able to intrinsically resolve microstructure and mechanical behavior of interphases. Therefore, we proceed with the following setup: A coarse-grained MD domain, which contains a single nanoparticle and as much polymer as necessary to ensure bulk behavior at the boundary, is included into a FE do-main. The FE boundary is used to apply various types of deformations and to record the overall stress responses of particle, surrounding interphase and bulk. With these data, the parameters of a purely continuous counterpart to the hybrid setup are iteratively adjusted until it behaves identically. As its main feature, the continuous ersatz-model substitutes the interphase between particle and polymer by an interface governed by a surface energy in the sense of Gibbs. This can be understood as a condensation of micro-scale property profiles within the 3-D interphase into a 2-D continuum mechanical model. Ultimately, after homogenizing the continuous ersatzmodel, macroscopic structure simulations allowing for a due consideration of interphase effects as occurring around nanoparticles are to be realized.

→ More information

Term: since 1. January 2015
Project leader: Kai Willner

Rotating systems are subject to gyroscopic effects, which influence the structure’s dynamics. The Arbitrary-Lagrangian-Eulerian formulation in the finite element method offers an efficient way to include translational and rotatory guiding movement in the model in the course of decoupling this motion from the FE mesh. At the same time this approach aggravates the computation of frictional contact of the rotating body with other still-standing structures.
This procedure stems from the…

→ More information

Term: since 1. January 2015
Project leader: Kai Willner

The numerical simulation of sheet-layered lamination stacks, which can be found in electric motors and transformers, is a challenging task in structural mechanics due to the layout of these components.  Depending on the manufacturing process, these sheets are either in frictional contact to each other or are linked together with the help of a bonding varnish. Especially the interlayer between individual sheets and their interaction have a strong influence on the structure and may be responsible for a nonlinear deformation behavior. In the context of performance and computational effort, it is desirable to avoid a full Finite-Element simulation incorporating every layer such that homogenization techniques are used in this project to derive a sophisticated surrogate material model, which takes the special micro-structure of these lamination stacks into account.

→ More information

Contact Persons:

  • Florian Beyer
  • Maximilian Volkan Baloglu

Participating Scientists:

  • Paul Steinmann
  • Denis Davydov
  • Kai Willner
  • Maximilian Volkan Baloglu
  • Ulf Engel
  • Marion Merklein
  • Florian Beyer
  • Maria Löffler
  • Ulrich Vierzigmann
  • Franz Hauer
  • Johannes Henneberg

Publications:

  • Baloglu MV., Willner K.:
    Determination of material parameters for a sheet‐layered lamination stack
    In: Proceedings in Applied Mathematics and Mechanics 17 (2017), p. 393-394
    ISSN: 1617-7061
    DOI: 10.1002/pamm.201710166
    URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201710166
  • Weidauer T., Willner K.:
    Model reduction of gyroscopic systems in ALE formulation with and without non-linearities
    GAMM 2018 (München, 19. March 2018 - 23. March 2018)
    In: PAMM, Volume 18, Weinheim: 2018
    DOI: 10.1002/pamm.201800216
  • Weidauer T., Willner K.:
    Reduced Order Modelling for Non-Linear Rotating Systems in ALE Formulation with Contact
    IMAC 2018 (Orlando, FL, USA, 12. February 2018 - 15. February 2018)
    In: Gaetan Kerschen (ed.): Nonlinear Dynamics, Volume 1; Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018 2018
    DOI: 10.1007/978-3-319-74280-9_31
Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstrasse 5
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Instagram
  • Twitter
  • Wikipedia
Up
Privacy Settings

Our website uses cookies and similar technologies.

Some cookies are necessary for visiting this website, i.e. essential. Otherwise, without these cookies, your end device would not be able to remember your privacy choices, for example.

If you agree, we also use cookies and data to measure your interactions with our website or to integrate external media (e.g. videos).

You can view and withdraw your consent at any time at Privacy policy. On the site you will also find additional information about the cookies and technologies used.

Privacy Settings

Accept all

Save

Accept only essential cookies

Individual privacy settings

Imprint Privacy policy Accessibility

Privacy Settings

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save Accept only essential cookies

Back

Privacy Settings

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Name
Provider Owner of this website
Purpose Saves the visitors preferences selected in the Consent Banner.
Privacy Policy https://www.ltm.tf.fau.eu/privacy/
Hosts www.ltm.tf.fau.eu
Cookie Name rrze-legal-consent
Cookie Expiry 1 Year
Name
Provider No transmission to third parties
Purpose Test if cookie can be set. Remember User session.
Privacy Policy https://www.ltm.tf.fau.eu/privacy/
Hosts .www.ltm.tf.fau.eu
Cookie Name wordpress_[*]
Cookie Expiry Session
Name
Provider No transmission to third parties
Purpose Used to manage WebSSO session state.
Privacy Policy https://www.ltm.tf.fau.eu/privacy/
Hosts www.ltm.tf.fau.eu
Cookie Name SimpleSAMLSessionID,SimpleSAMLAuthToken
Cookie Expiry Session
Name
Provider No transmission to third parties
Purpose Preserves user session state across page requests.
Privacy Policy https://www.ltm.tf.fau.eu/privacy/
Hosts www.ltm.tf.fau.eu
Cookie Name PHPSESSID
Cookie Expiry Session

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Show Cookie Information Hide Cookie Information

Accept
Name
Provider Rosenheimer Str. 143 C, 81671 Munich, Germany
Purpose Used to help record the visitor’s use of the website.
Privacy Policy https://www.siteimprove.com/privacy/privacy-policy/
Hosts siteimprove.com
Cookie Name nmstat
Cookie Expiry 1000 Days

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Show Cookie Information Hide Cookie Information

Accept
Name
Provider Twitter International Company, One Cumberland Place, Fenian Street, Dublin 2, D02 AX07, Ireland
Purpose Used to unblock Twitter content.
Privacy Policy https://twitter.com/privacy
Hosts twimg.com, twitter.com
Cookie Name __widgetsettings, local_storage_support_test
Cookie Expiry Unlimited
Accept
Name
Provider Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Purpose Used to unblock YouTube content.
Privacy Policy https://policies.google.com/privacy?hl=en&gl=en
Hosts google.com, youtube.com, youtube-nocookie.com
Cookie Name NID
Cookie Expiry 6 Months
Accept
Name
Provider Vimeo Inc., 555 West 18th Street, New York, New York 10011, USA
Purpose Used to unblock Vimeo content.
Privacy Policy https://vimeo.com/privacy
Hosts player.vimeo.com
Cookie Name vuid
Cookie Expiry 2 Years
Accept
Name
Provider Scribd, Inc., 460 Bryant St, 100, San Francisco, CA 94107-2594 USA
Purpose Used to unblock Slideshare content.
Privacy Policy https://www.slideshare.net/privacy
Hosts www.slideshare.net
Cookie Name __utma
Cookie Expiry 2 Years
Accept
Name
Provider Bayerischer Rundfunk, Rundfunkplatz 1, 80335 Munich, Germany
Purpose Used to unblock BR content.
Privacy Policy https://www.br.de/unternehmen/service/impressum/impressum-datenschutzerklaerung-unternehmen-v2-100.html
Hosts www.br.de
Cookie Name atid
Cookie Expiry 1 Year
Accept
Name
Provider Bayerischer Rundfunk, Rundfunkplatz 1, 80335 Munich, Germany
Purpose Used to unblock ARD content.
Privacy Policy https://www.ardmediathek.de/datenschutz
Hosts www.ardmediathek.de
Cookie Name atidvisitor
Cookie Expiry 1 Year

Imprint Privacy policy Accessibility