• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Applied Mechanics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Faculty of Engineering
  • Mein Campus
  • UnivIS
  • StudOn
  • Map
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Institute of Applied Mechanics
Navigation Navigation close
  • Institute
    • Team
    • Alumni
    • Library
    • Job Offers
    Portal Institute
  • Research
    • Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
    • Contact mechanics
      • Material modelling of sheet-layered lamination stacks
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Constitutive friction law for the description and optimization of tailored surfaces
    • Material Mechanics
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of solvent penetration in glassy polymers
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Material modelling of sheet-layered lamination stacks
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Material modelling of sheet-layered lamination stacks
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Uncertainty Quantification
      • C3: Parameter and shape optimization in finite elastoplasticity
      • Fuzzy-arithmetical modeling of processes with uncertain prarameters
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
    • Multiscale mechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Process Simulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Macroscopic modeling, simulation, and optimization of the selective beam melting process (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Structural dynamics
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Vibration reduction by energy transfer using shape adaption
      • Structural dynamics of rotating systems
      • Investigation and reduction of nonlinear oscillation systems using modal approaches
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
    • Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Other Projects
      • A numerical model of translational and rotational momentum transfer of small on-spherical rigid particles in fluid dominated two-phase flows
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publications
    • Theses
    Portal Research
  • Teaching
    • Topics
    • Lectures
    • Examinations
    • LTM juniors
    Portal Teaching
  • Activities
    • Conferences
      • ICEAM2017
    • Invited talks
    Portal Activities
  1. Home
  2. Research
  3. Optimization
  4. Structural optimization of shape and topology using an embedding domain discretization technique

Structural optimization of shape and topology using an embedding domain discretization technique

In page navigation: Research
  • Biomechanics
  • Contact mechanics
  • Material Mechanics
  • Uncertainty Quantification
  • Multiscale mechanics
  • Process Simulation
  • Structural dynamics
  • Optimization
    • Teilprojekt P11 - Fracture Control by Material Optimization
    • Teilprojekt P8 - Fracture in Polymer Composites: Meso to Macro
    • Structural optimization of shape and topology using an embedding domain discretization technique
    • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
    • Teilprojekt P10 - Configurational Fracture/Surface Mechanics
    • Adaptive finite elements based on sensitivities for topological mesh changes
  • Other Projects

Structural optimization of shape and topology using an embedding domain discretization technique

Structural optimization of shape and topology using an embedding domain discretization technique

(Own Funds)

Overall project:
Project leader: Paul Steinmann
Project members: Stefan Riehl
Start date: 1. January 2013
End date: 31. December 2018
Acronym:
Funding source:
URL:

Abstract

This project targets the formulation and implementation of a method for structural shape and topology optimization within an embedding domain setting. Thereby, the main consideration is to embed the evolving structural component into a uniform finite element mesh which is then used for the structural analyses throughout the course of the optimization. A boundary tracking procedure based on adaptive (or hierarchical) mesh refinement is used to identify interior and exterior elements, as well as such elements that are intersected by the physical domain boundary of the structural component. By this mechanism, we avoid the need to provide an updated finite element mesh that conforms to the boundary of the structural component for every single design iteration. Further, when considering domain variations of the structural component, its material points are not attached to finite element nodal points but rather move through the stationary finite element mesh of the embedding domain such that no mesh distortion is observed. Hence, one circumvents the incorporation of time consuming mesh smoothing operations within the domain update procedure. In order to account for the geometric mismatch between the boundary of the structural component and its non-conforming finite element representation within the embedding domain setting, a selective domain integration procedure is employed for all elements that are intersected by the physical domain boundary. This is to distinguish the respective element area fractions interior and exterior to the structural component. We rely on an explicit geometry description for the structural component, and an adjoint formulation is used for the derivation of the design sensitivities in the continuous setting.

Publications

  • Riehl S., Friederich J., Scherer M., Meske R., Steinmann P.:
    On the discrete variant of the traction method in parameter-free shape optimization
    In: Computer Methods in Applied Mechanics and Engineering 278 (2014), p. 119-144
    ISSN: 0045-7825
    DOI: 10.1016/j.cma.2014.05.009
  • Riehl S., Steinmann P.:
    A staggered approach to shape and topology optimization using the traction method and an evolutionary-type advancing front algorithm
    In: Computer Methods in Applied Mechanics and Engineering 287 (2015), p. 1-30
    ISSN: 0045-7825
    DOI: 10.1016/j.cma.2015.01.007
  • Riehl S., Steinmann P.:
    On structural shape optimization using an embedding domain discretization technique
    In: International Journal for Numerical Methods in Engineering 109 (2017), p. 1315 - 1343
    ISSN: 0029-5981
    DOI: 10.1002/nme.5326
  • Riehl S., Steinmann P.:
    An integrated approach to shape optimization and mesh adaptivity based on material residual forces
    In: Computer Methods in Applied Mechanics and Engineering 278 (2014), p. 640-663
    ISSN: 0045-7825
    DOI: 10.1016/j.cma.2014.06.010

Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg

Egerlandstrasse 5
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • Instagram
  • Twitter
  • Wikipedia
Up