• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Friedrich-Alexander-Universität Institute of Applied Mechanics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Suche öffnen
  • Faculty of Engineering
  • Mein Campus
  • UnivIS
  • StudOn
  • Map
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Maschinenbau
Friedrich-Alexander-Universität Institute of Applied Mechanics
Navigation close
  • Institute
    • Team
    • Alumni
    • Library
    • Job Offers
    Portal Institute
  • Research
    • Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
    • Contact mechanics
      • Material modelling of sheet-layered lamination stacks
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • C1: Constitutive friction law for the description and optimization of tailored surfaces
    • Material Mechanics
      • On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of growth in soft biological matter
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • A coupled MD-FE simulation method accounting for interphases in nanoparticle filled thermoplastics.
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
      • Modeling and computation of solvent penetration in glassy polymers
      • Modeling and computation of growth in soft biological matter
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Electronic electro-active polymers under electric loading: Experiment, modeling and simulation
      • Material modelling of sheet-layered lamination stacks
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Material modelling of sheet-layered lamination stacks
      • On the Modelling and Computation of Magneto-Sensitive-Elastomers
      • Mehrskalenmodellierung und -simulation der Mechanik von Materialien mit Faserstruktur
    • Uncertainty Quantification
      • C3: Parameter and shape optimization in finite elastoplasticity
      • Fuzzy-arithmetical modeling of processes with uncertain prarameters
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
      • A hybrid Sampling-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
    • Multiscale mechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • BRAIn mechaNIcs ACross Scales: Linking microstructure, mechanics and pathology
      • Teilprojekt P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Novel Biopolymer Hydrogels for Understanding Complex Soft Tissue Biomechanics
      • Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C5)
      • Teilprojekt P5 – Compressive Failure in Porous Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Multi-scale modeling of nano-structured polymeric materials: from chemistry to materials performance
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Identifikation von Interphaseneigenschaften in Nanokompositen
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
      • Multiscale modeling of nervous tissue: comprehensively linking microstructure, pathology, and mechanics
      • Fractures across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics/ Skalenübergreifende Bruchvorgänge: Integration von Mechanik, Materialwissenschaften, Mathematik, Chemie und Physik
      • Bridging scales – from Quantum Mechanics to Continuum Mechanics. A Finite Element approach.
      • Teilprojekt P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
    • Process Simulation
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC.
      • Macroscopic modeling, simulation, and optimization of the selective beam melting process (C3)
      • Simulations- und versuchsbasierte Untersuchung der Wechselwirkung zwischen Zerspanprozess und Maschinenstruktur beim Hochleistungsflachschleifen
      • Experimentell basierte Modellierung, Simulation und Kompensation thermischer Einflüsse beim Drehen mesoheterogener Werkstoffe aus Al-MMC. Phase 2
    • Structural dynamics
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
      • Vibration reduction by energy transfer using shape adaption
      • Structural dynamics of rotating systems
      • Investigation and reduction of nonlinear oscillation systems using modal approaches
      • Reduced order modelling of non-linear gyroscopic systems in ALE formulation with frictional contact
    • Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Structural optimization of shape and topology using an embedding domain discretization technique
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
      • Teilprojekt P11 – Fracture Control by Material Optimization
      • Adaptive finite elements based on sensitivities for topological mesh changes
      • Teilprojekt P8 – Fracture in Polymer Composites: Meso to Macro
      • Discrete and Continuous Methods for Modelling and Simulation of Polymeric Materials
      • Teilprojekt P10 – Configurational Fracture/Surface Mechanics
    • Other Projects
      • A numerical model of translational and rotational momentum transfer of small on-spherical rigid particles in fluid dominated two-phase flows
      • Fracture Across Scales and Materials, Processes and Disciplines
      • Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
      • Numerical and experimental study of the deposition of micro-sized non-spherical solid particles in the nasal cavity
    • Publications
    • Theses
    Portal Research
  • Teaching
    • Topics
    • Lectures
    • Examinations
    • LTM juniors
    Portal Teaching
  • Activities
    • Conferences
      • ICEAM2017
    • Invited talks
    Portal Activities
  1. Home
  2. Institute of Applied Mechanics
  3. Research
  4. Biomechanics
  5. Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)

Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)

In page navigation: Institute of Applied Mechanics
  • Activities
  • Institute
  • Publications
  • Teaching
  • Research
    • Biomechanics
      • Modeling and computation of growth in soft biological matter
      • Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)
    • Contact mechanics
    • Material Mechanics
    • Multiscale mechanics
    • Process Simulation
    • structural dynamics
    • Optimization
    • Other Projects

Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)

Modelling and simulation of nonlinear electro-thermo-visco-elastic EAPs(Electronic Electro-Active Polymers)

(Third Party Funds Single)

Overall project:
Project leader: Paul Steinmann
Project members:
Start date: 1. January 2014
End date:
Acronym:
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL:

Abstract

The numerical modeling and simulation of the behavior of EEAPs (Electronic Electro-Active Polymers) under electric loading is considered in this proposal. Despite the fact that efforts have been made to simulate the behavior of EEAPs, work still needs to be done to model the electro-thermo-mechanical interaction in a body undergoing large deformation and being subjected to the influence of the free space surrounding the material body. First of all, until now there exists no thermo-dynamically consistent model that at the same time accounts for large deformations, nonlinear electric polarization, visco-elasticity and the temperature-dependent electro-mechanical properties of EEAPs. At the moment, there exists no software that is capable of simulating these effects simultaneously. In addition, almost all works in the literature related to EEAPs did not consider the effect of the free space surrounding a body of interest and as a consequence can only be used in the case of simulating condensator-like structures whose thickness is very small in comparison with other dimensions. In this proposal, the behavior of EEAPs will be modeled using the theory of electro-thermo-visco-elasticity and will be simulated by using the finite element method (FEM) coupled with the boundary element method (BEM). The FEM will be used to model the material body and the BEM will be used to model the surrounding free space. Besides the numerical simulation of the electro-thermo-mechanical interaction in EEAPs, the numerical evaluation of material forces in structures with defects made of EEAPs, taking into account the electro-thermo-visco-elastic effect, is also considered. These forces can be used, for example, in the prediction of the propagation of cracks, which can take place in EEAP-based structures under electric loads.

Publications

    Institute of Applied Mechanics
    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Egerlandstrasse 5
    91058 Erlangen
    Germany
    • Contact
    • Imprint
    • Privacy
    • Accessibility
    • Facebook
    • Instagram
    • Twitter
    • Wikipedia
    Up
    Privacy Settings

    Our website uses cookies and similar technologies.

    Some cookies are necessary for visiting this website, i.e. essential. Otherwise, without these cookies, your end device would not be able to remember your privacy choices, for example.

    If you agree, we also use cookies and data to measure your interactions with our website or to integrate external media (e.g. videos).

    You can view and withdraw your consent at any time at Privacy policy. On the site you will also find additional information about the cookies and technologies used.

    Privacy Settings

    Accept all

    Save

    Accept only essential cookies

    Individual privacy settings

    Imprint Privacy policy Accessibility

    Privacy Settings

    Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

    Accept all Save Accept only essential cookies

    Back

    Privacy Settings

    Essential cookies enable basic functions and are necessary for the proper function of the website.

    Show Cookie Information Hide Cookie Information

    Name
    Provider Owner of this website
    Purpose Saves the visitors preferences selected in the Consent Banner.
    Privacy Policy https://www.ltm.tf.fau.eu/privacy/
    Hosts www.ltm.tf.fau.eu
    Cookie Name rrze-legal-consent
    Cookie Expiry 1 Year
    Name
    Provider No transmission to third parties
    Purpose Test if cookie can be set. Remember User session.
    Privacy Policy https://www.ltm.tf.fau.eu/privacy/
    Hosts .www.ltm.tf.fau.eu
    Cookie Name wordpress_[*]
    Cookie Expiry Session
    Name
    Provider No transmission to third parties
    Purpose Used to manage WebSSO session state.
    Privacy Policy https://www.ltm.tf.fau.eu/privacy/
    Hosts www.ltm.tf.fau.eu
    Cookie Name SimpleSAMLSessionID,SimpleSAMLAuthToken
    Cookie Expiry Session
    Name
    Provider No transmission to third parties
    Purpose Preserves user session state across page requests.
    Privacy Policy https://www.ltm.tf.fau.eu/privacy/
    Hosts www.ltm.tf.fau.eu
    Cookie Name PHPSESSID
    Cookie Expiry Session

    Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

    Show Cookie Information Hide Cookie Information

    Accept
    Name
    Provider Rosenheimer Str. 143 C, 81671 Munich, Germany
    Purpose Used to help record the visitor’s use of the website.
    Privacy Policy https://www.siteimprove.com/privacy/privacy-policy/
    Hosts siteimprove.com
    Cookie Name nmstat
    Cookie Expiry 1000 Days

    Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

    Show Cookie Information Hide Cookie Information

    Accept
    Name
    Provider Twitter International Company, One Cumberland Place, Fenian Street, Dublin 2, D02 AX07, Ireland
    Purpose Used to unblock Twitter content.
    Privacy Policy https://twitter.com/privacy
    Hosts twimg.com, twitter.com
    Cookie Name __widgetsettings, local_storage_support_test
    Cookie Expiry Unlimited
    Accept
    Name
    Provider Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
    Purpose Used to unblock YouTube content.
    Privacy Policy https://policies.google.com/privacy?hl=en&gl=en
    Hosts google.com, youtube.com, youtube-nocookie.com
    Cookie Name NID
    Cookie Expiry 6 Months
    Accept
    Name
    Provider Vimeo Inc., 555 West 18th Street, New York, New York 10011, USA
    Purpose Used to unblock Vimeo content.
    Privacy Policy https://vimeo.com/privacy
    Hosts player.vimeo.com
    Cookie Name vuid
    Cookie Expiry 2 Years
    Accept
    Name
    Provider Scribd, Inc., 460 Bryant St, 100, San Francisco, CA 94107-2594 USA
    Purpose Used to unblock Slideshare content.
    Privacy Policy https://www.slideshare.net/privacy
    Hosts www.slideshare.net
    Cookie Name __utma
    Cookie Expiry 2 Years
    Accept
    Name
    Provider Bayerischer Rundfunk, Rundfunkplatz 1, 80335 Munich, Germany
    Purpose Used to unblock BR content.
    Privacy Policy https://www.br.de/unternehmen/service/impressum/impressum-datenschutzerklaerung-unternehmen-v2-100.html
    Hosts www.br.de
    Cookie Name atid
    Cookie Expiry 1 Year
    Accept
    Name
    Provider Bayerischer Rundfunk, Rundfunkplatz 1, 80335 Munich, Germany
    Purpose Used to unblock ARD content.
    Privacy Policy https://www.ardmediathek.de/datenschutz
    Hosts www.ardmediathek.de
    Cookie Name atidvisitor
    Cookie Expiry 1 Year

    Imprint Privacy policy Accessibility